

Header Compression for IP-Telephony over Cellular Links

Lars-Erik Jonsson (Ericsson Research)

Mikael Degermark (Luleå University of Technology)

Hans Hannu (Ericsson Research)

Krister Svanbro (Ericsson Research)

Introduction

 Goal: Providing IP to cellular phones and making IPtelephony as speech service economical feasible compared to the traditional circuit switched solution.

Characteristics of cellular links

- High bit-error-rate (BER). A BER of 10⁻³ -10⁻² is not uncommon.
- Large round-trip time (RTT). In today's systems, RTTs may be as large as 200 ms.
- Expensive bandwidth, meaning that every saved octet per packet is important.

CRTP evaluation - simulation results: CRTP header sizes

CRTP evaluation - simulation results: Packet loss rates

CRTP evaluation - simulation results: Loss distribution

6850 packets, BER: 2.3e-04 6640 packets, BER: 1.1e-03 No Twice With Twice 1 2 3 4 5 6 7 8 9 Consecutive packets lost 11 12 13 14 15 7405 packets, BER: 4.0e-03 150 No Twice With Twice events

10% loss before HC

CRTP evaluation - Conclusions:

- CRTP performs very well for BERs less than 10⁻⁵, but not so well for BERs higher than 10⁻⁴.
- The major cause of CRTPs bad performance is that many packets are discarded due to context damage while waiting a link round-trip time for the repair mechanism.
- The losses induced by CRTP is problematic not only because they are high. Also the loss patterns are inappropriate and will certainly cause noticeable voice degradation.
- If only packets with errors in the header part are discarded by the link layer, the loss rate will decrease by 40%.

Requirements for a new header compression scheme

- Compressed headers must not be larger than with CRTP, and compression should be optimized as much as possible.
- The scheme must be robust against loss before as well as after the compression point.
- Implementation and computation simplicity are less important.

Summarizing: The scheme must have highest possible COMPRESSION EFFICIENCY while still providing a certain amount of ROBUSTNESS against link errors.

RObust Checksum-based header COmpression, ROCCO: Main principles

- Heavily geared towards local de-compressor context repairs.
- Can reliably detect successful repairs through a header compression CRC computed over the header before compression.
- A basic framework is specialized for specific kinds of links and packet streams through the use of "profiles".
 - Requires mechanisms for Separation, Identification and Classification of different flows.

RObust Checksum-based header COmpression, ROCCO: An IP-telephony profile for cellular links

- Additional compressed header information is included in a way maximizing the compression efficiency based on the assumed IP-telephony usage of RTP.
- Our profile for IP telephony expects steady increments in the RTP sequence number and has a robust encoding of the differences from that behavior in the compressed header.
- Compressed header format:

- Header Compression CRC is a 10-bit CRC computed over the original packet header.
- The Sequence-Code corresponds to the robust encoding mentioned above.

Performance results of ROCCO: Header sizes

Performance results of ROCCO: Packet loss rate

Performance results of ROCCO: Loss distribution

Conclusions

- CRTP is an appropriate and general header compression scheme over reliable links and when many different RTP streams are intermixed.
- ROCCO-based solutions on the other hand can outperform CRTP and may be needed to make IP telephony economically feasible over cellular links.

Documentation and contacts

- Internet-Drafts
 - draft-degermark-crtp-cellular-00.txt/ps
 - draft-jonsson-robust-hc-00.txt/ps
- Authors

◆Lars-Erik Jonsson lars-erik.jonsson@ericsson.com

◆Mikael Degermark micke@sm.luth.se

♦ Hans Hannu hans.hannu@lu.erisoft.se

Krister Svanbro krister.svanbro@lu.erisoft.se

An ideal header compression scheme

- Introduced and defined for comparison purposes.
- Performs like CRTP would do if used over error-free links to compress input data without irregular changes in its header fields.
- Characteristics of the scheme are:
 - **♦**The compressed header is always two octets.
 - ◆No packets are lost due to context damage.
 - **◆**De-compressor context do not need to be initialized.

Used link layers

- PPP in HDLC-like framing (HDLC)
 - FCS (checksum) covers protocol and the entire information field
 - Any errors anywhere in the frame will cause the FCS to fail and the frame will be discarded

- Link layer with partial checksum (LLPC)
 - ◆FCS (checksum) covers an optional part of the Information field, indicated by the length field.
 - Errors in the remaining part of the Information field will not cause the frame to be discarded

1	_ 1	1	2		
Flag	Length	Protocol	Information	FCS	Flag
01111110	8 bits	8 bits	X bits	16 bits	01111110

Simulated scenario

- Source
 - Generates RTP packets containing speech data.
- Speech Source
 - Payload: 16 octets, 20 ms of sound data.
 - Exponentially distributed talk spurts and silence intervals with expected lengths of 1 second.
- Cellular Link
 - WCDMA channel.
- Back channel
 - Gives an RTT of approximately 120 ms.
- Resulting frame-error-rate = Packet loss rate due to link-layer loss and header de-compressor loss.

Further work

- More precisely define the scopes of the header compression framework and the compression profiles.
- Improve the IP-telephony profile for cellular links with for instance a more efficient way to handle CSRC lists.
- Study how separation and characterization of flows can be done.
- Find suitable ways to negotiate the use of compression profiles.
- Specify a compression profile for video.